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Transfer Matrix Calculation of the Exponent ~/ 
for Two-Dimensional Self-Avoiding Walks 
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We develop two independent transfer matrix methods for the determination of 
the exponent 7 in the two-dimensional, self-avoiding walk problem. Our first 
method is based on the calculation of the correlation length and uses conformal 
invariance. Our second method is based on the direct calculation of the 
moments of the order parameter distribution. Our results are in good agreement 
with the conjectured values. 
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The problem of self-avoiding walks (SAW) on a lattice is one of the most 
studied problems in statistical mechanics. The basic quantities to be 
determined are the exponent v, which relates the mean square end-to-end 
distance (IRtl 2) to the length I of the walk for l~> 1 by 

(IR,I 2) ~/~ (1) 

the connectivity constant # and the exponent 7, which give the asymptotic 
behavior of the number of SAWs of length l and fixed origin 

cot ~ f F - 1  (2) 

The critical exponents 7 and v are expected to be universal (they should 
depend only on the dimensionality of the lattice) as for magnetic 
systems (1'2) while the connectivity constant # plays the role of a critical 
temperature in magnetic systems and thus depends on the lattice. 

In two dimensions much information concerning these quantities has 
been obtained by numerical methods like series expansions, ~ 5) Monte 
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Carlo calculations, (6'7) or real space renormalizations. (8 lo) Exact values of 
the exponents have also been conjectured. (11) The value v = 3, which was 
also proposed by Flory (12) many years ago, is now considered to be in 
good agreement with numerical data (see Ref. 7 for a complete discussion). 
The value ~ = 43/32 (m has led to some discussion because on the basis of 
series methods, 7 was believed to be 4 for many years. (3) However, a 
reanalysis of the series expansions (4,s) now supports the value 7 = 43/32, 
which agrees also with recent Monte Carlo simulations. (7) The real space 
renormalization approaches were first used to determine # and v only, (8<~ 
However, a cell method has been recently extended (~~ to the determination 
of y, but with rather inaccurate results. The purpose of the present work is 
to extend the transfer matrix approach of Ref. 8 to the calculation of the 
exponent 7 in the SAW problem. We use two different methods. The first is 
based on the calculation of the correlation length and uses conformal 
invariance; the second is based on the direct calculation of the moments of 
the order parameter distribution. 

In transfer matrix studies of critical phenomena one usually calculates 
the correlation length ~, for a strip of width n as a function of the inverse 
temperature ft. One then makes a finite size scaling assumption (~3~ 

G "" n f E n l / ~ ( B  - Bc)] (3) 

which should be valid for n >> 1 and fl - tic ~ 1. v is the correlation length 
exponent and tic is the inverse of the critical temperature tic= 1/zc. 
Estimates fl~ of tic can be obtained by solving the phenomenological renor- 
realization equations (13) 

~n(fl c ) -- ~n l(fln c ) 
n n - -1  

(4a) 

while estimates of v are given by 

1 log L-~- ~dCn (flCn)/d~n-1/T (fie)] 
1 + - - =  

v n log [ n / n  - 1 ] 
(4b) 

According to the finite size scaling form (3), these estimates 'should con- 
verge to the correct values when n--* oo. In practice, one calculates 
numerically fi~ and vn for increasing sizes n and one extrapolates these 
values. This method has already been applied to the determination of 
tic= 1/# and v in the case of the SAW problem in Ref. 8. 
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The knowledge of the correlation length on strips also allows us to 
determine another exponent. From conformal invariance in two dimensions 
one knows that (~4~ 

lim ~"(fi~)- 1 (5) 
n ~  ~ n ~r] 

where ~n is the correlation length of a strip of width n with periodic boun- 
dary conditions and the exponent r/is related to 7 and v by 7/v = 2 -  q. 

We use relation (5) to obtain a first determination of the ratio ~/v. We 
have just reproduced the calculation described in Ref. 8 to obtain estimates 
r/. of q by 

n 
= ~  c (6) 

The values o f / ~  and v obtained in this way have been published. (8~ These 
estimates are given in Table I. 

All our calculations have been done for the square lattice and for 
strips oriented parallel to one axis of the lattice ((1, 0) direction) or for 
strips oriented parallel to the (1, 1) direction. Such diagonal strips have 
already been used in transfer matrix calculations. (~5) 

The results in Table I converge in a regular way to the expected 
value (u~ ~/-- 5/24 = 0.20833, the convergence being much better in the case 
of diagonal strips. To extrapolate these data we use the a posteriori 
extrapolation method described in Ref. 15. 

Table  I. Est imate  of  q,, and fi,,'~ 

q, Normal  t/, Diagonal  q, Normal q, Diagonal 
n direction direction direction direction 

2 0.336167 0.159626 
3 0.291922 0.193194 0.674666 0.206151 
4 0.257065 0.200920 0.163800 0.208024 
5 0.236704 0.204010 0.202772 0.208257 
6 0.225882 0.205540 0.208644 0.208309 
7 0.220063 0.206400 0.209600 
8 0.216731 0.209453 
9 0.214673 0.209146 

10 0.213110 

5 
Expected value ~ = ~ = 0 . 2 0 8 3 3 3  m) 

a In this table we give estimates t/,, defined by (6) in the case of the square lattice and strips 
oriented in normal or diagonal direction and estimates qn deduced from the preceeding 
values and an a posteriori analysis (see text). 
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To do so we calculate for each triplet of results t t . _ l , t /n ,~ / .+  1 an 
"effective" exponent  c% of correct ion to scaling by 

t/~_ 1 - t/. ( n - l )  . . . . .  n -~~176 
= ( 7 )  

q . - - q . + l  n . . . .  ( n + l )  -~~ 

Once 09 n is determined one extrapolates the straight line which goes 
through r/,_ 1, t/n, t / ,+ l  in the plot of t/, versus n -~" to obtain a new value, 
0,  which is usually a better estimate of r / t han  r/,. 

Ou r  results for 0,  are also given in Table I. The convergence is now 
faster, particularly in the case of  diagonal  strips. The use of  an a priori 
method  <~5) gave very similar results here. For  the final extrapolat ion we 
have plotted in Fig. 1 all our  results for t/n and 4,  versus n -e 's ,  a choice 
which gives rather smooth  curves for all the data. F r o m  Fig. 1 one deduces 

q = 0.2082 __+ 0.0008 (8) 

and thus 

Z = 1.7918 + 0.0008 (9) 
V 

This gives a relative error  of about  5 1 0  - 4  for this ratio. 
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Plot of different estimates of t /versus n -2,5 (see Table I): lZ--str ips in normal direc- Fig. 1. 
tion; A--s t r ips  in diagonal direction; m - - a  posteriori results, strips in normal direction; 
A - - a  posteriori results, strips in diagonal direction. The result of our final extrapolation is 
indicated with error bars. 
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Our second approach consists of calculating the cumulants of the 
order parameter distribution instead of the correlation lengths. This 
approach was first used in Monte Carlo simulations (16) but it is also 
possible to calculate the moments of the order parameter using transfer 
matrices. This was done for the Ising Model, ~17'18) and the estimates of the 
critical point and of the exponents were comparable in accuracy to those 
obtained with correlation lengths. Moreover the method allowed the direct 
determination of two independent critical exponents. We present here a 
similar calculation in the case of the SAW problem. 

A simple way of defining the moments of the order parameter is to 
consider that the SAW problem is the limit of the Heisenberg model with s 
components in the limit s ~ 0. For  a system of s components classical spins 
whose Hamiltonian is 

fill= --fl ~ S, 'Sj-h ~ S] (10) 
( i j )  i 

with Z~= 1 (S~) 2 = s on a strip of width n we define (17) the first cumulants 
per unit length 

(M2) 
m2= lira - -  ( l l a )  

L~oo  L 

( M  4 ) - 3 ( M 2 )  2 
m4= lim ( l l b )  

L~o~ g 

where M is the total magnetization in zero magnetic field of a strip of 
length L. These quantities should satisfy a finite size scaling form (~7) 

m2 ~ n I + 7/~ f 2[nl/V(t~ -- tic)] (12a) 

m 4  ~ n 3 + 2~/"f4[nl/V(fl-- fl~)] (12b) 

which depends on the two exponents y and v. 
In the limit s--*0 this model gives the problem of SAW. (~'2) In this 

limit the partition function of a system of V spins can be rewritten as (1'2) 

Z(~,h)=(l +h---2)V {l + ~ h2P~'(l +h---2)-P-~g2p~} (13) 

l>~p 

where ~2p~ is the number of different configurations of p nonintersecting 
SAWs of total length l on the lattice of V spins. 

In this formula the factors h2/2 can be interpreted as the contribution 
of the SAWs of zero length. Such factors were omitted in early 
discussions/2) They do not affect the critical behavior of the infinite system 
but modify the finite size data. 
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Using this geometrical interpretation, the partition function (13) can 
be calculated for strips of width n and periodic boundary conditions by the 
transfer matrix technique. The calculation is similar to what was done in 
Ref. 8, with the difference that there are now several polymers on the strip, 
In this case the possible configurations at one column L are defined by the 
pairs of sites connected by the left part of the strip and by all the sites 
which are extremities of polymers whose other extremity is in the left part 
of the strip. The number of these configurations grows more rapidly than in 
Ref. 8. When calculating the transfer matrix elements which are defined in 
a similar way as in Ref. 8, one now has to take into account the polymers 
which begin or end when one goes from one column to the next. There is a 
factor fl for each monomer and h for each end point of a polymer. These 
matrix elements depend thus on fi and h. 

The partition function is simply obtained as a power of the largest 
eigenvalue of the transfer matrix 2(fl, h) and the moments m2 and m4 (17) are 
then given by 

d 2 
m2 =)~-7 log )~(/3, h)[h=o (14a) 

d 4 
m4 =~-ff~ log 2(/~, h)lh=o (14b) 

These moments have a simple geometrical interpretation 

m2(/~)= ~ col/~l (15a) 
M l=0 

m4(fl)  
, o 1 + c  (15b) 

- -  I i )  l , l ,  p 
6 n  l , l ,  = o 

In these formulas co t is the number of configurations of a SAW of length l 
with a fixed origin (because we consider strips with periodic boundary con- 
ditions, this number does not depend on the position of this extremity on 
the strip), cot, r = cor,t is the number of configuration of two SAWs of l and l' 
links with .at least one site in common, the extremity of one of the two 
walks being fixed. In evaluating these quantities one must give a special 
weight �89 to the SAWs of zero length. 

We note that one can obtain the co~ or co~,r from the knov~ledge of m2 
and m4. In particular, the asymptotic behavior of col and 0)l,l, for l, l' large 
is simply related to the singularities of m2 and m 4. 

It is difficult to accurately calculate derivatives when one performs 
these derivatives numerically. To avoid this difficulty we have performed all 
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the calculations perturbatively as explained in Ref. 17, up to fourth order 
in h. This gives the derivatives of an eigenvalue with the same accuracy as 
the eigenvalue itself. 

From knowledge of m2 and m4 one can get estimates of the critical 
properties using the finite size scaling form (12). If one defines 

One has, from (12) 

m4 
R , = L  3~m2 ~2 (/~) (16) 

R.~nf[nll '(f l-f l~)] (17) 

An est imate/~ of/3 <. is then obtained by solving equations similar to (4) 

R,,(/7;) = R,,_ ~(p,~) (18) 
iv/ #7--1 

Once/3,~ is known one can get estimates of v by the relation 

l-dRn 

1 + - - =  
v ,  l og[n / n  - 1 ] 

and of the ratio ~//v by 

(19) 

, L m z . , , - l ( f l ~ ) J l  

Our results are given in Table IIA for strips oriented in the normal direc- 
tion and IIB for strips in the diagonal direction. 

One can see that the convergence of these results is rather slow, par- 
ticularly for the exponent v in the case of normal strips. The convergence is 
better for the ratio y/v, although the use of an a posteriori or a priori 
analysis (15) does not improve the results significantly in this case. A plot of 
the quantities 7Iv versus n -~'5 gave rather regular curves for the data, as 
shown in Fig. 2. From this figure we deduce 

- = 1 . 8 0  +_ 0 . 0 1  ( 2 1 )  
Y 

The ratio 7/v is thus obtained with a relative error of about 5 .10  - 3  in this 
case. 
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Table II, Results of a Finite Size Scaling Analysis of the 
Ratios R .  (16) in the Case of Normal  and Diagonal Strips ~ 

1 7 --m4 
S. fl~ = - -  - v 

#SQ v 6 n m  2 

A 

2 4 0.375807 2.14267 0.514706 1.37522 
3 6 0.371796 1.85941 0.632300 1.32887 
4 13 0.375621 1.81930 0.676755 1.41517 
5 23 0.377576 1.81261 0.701876 1.49017 
6 58 0.378389 1.81063 0.716286 1.53642 
7 130 0.378725 1.80873 0.724873 1.56227 
8 356 0.378875 1.80674 0,73035 1.57682 

Expected values 0.3790528 ~-43_ 1.79167(m �88 0.75 m) 
• 0.0000025 (5~ 

B 

2 6 0.391467 2.01285 0.710675 2.27300 
3 12 0.381588 1.88918 0.714420 1.81893 
4 33 0.379971 1.84878 0.725042 1.71899 
5 79 0.379479 1.82978 0.731715 1.67710 
6 249 0.379117 1.82035 0.73642 1.65280 

Expected values 0.3790528 ~=43 1,79167(11) z-3-0.75(11) 
• (5~ 

a Sn is the size of the symmetrized transfer matrix and #SQ the connectivity constant (2) of the 
square lattice. The convergence, which is rather slow for the exponent v, is better for 7/v. 

The quant i ty  

nlim ~ - m 4 

is expected to be universal,  depending  only on the universali ty class of the 

model  and  on the finite size scaling geometry (strips with periodic boun-  
dary condi t ions  in this case). 

Such ratios have already been calculated by various methods  in the 
case of the 2D and  3D Ising Model  (16~18) or 2D and 3D percolation.  (17) 

Mean  field values and  e expansion results have also been givenJ 19~ F r o m  
the data  given in Table  II, we get the following estimate for this universal  
ratio in the case of polymers 

= l i r a  a -m___!4 6nm~ (/~c) = 1.63 + 0.03 (22)  
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Fig. 2. Plot of our estimates of 7/v (see Table II) versus n-t's: ~--strips in normal direc- 
tion; ~--strips in diagonal direction. The result of the final extrapolation is indicated with 
er ror  bars. 

This ratio has a simple physical meaning. One knows (1'2] that the partition 
function (13) is the grand canonical partition function of a polymer 
solution where the lengths of the chains and their concentrations fluctuate. 

For a polymer density c (we take the lattice spacing as unit length) 
and a temperature T, the virial expansion of the osmotic pressure reads 

7T 
- -  = C 4-  b c  2 4 -  " ' "  (23) 
T 

In this expansion T is the temperature of the polymer solution. It is not 
related to the properties of the magnetic system whose temperature ~ = 1/fl 
controls the mean length Y of the chains. The coefficient b for a solution of 
polymers on strips is then given by ~1'2'2~ 

b , = n 2  ( - -  R-2(/~!" ] (24) 
6n ] 

When/? goes to tic, the coefficient b for an infinite system diverges with 
like 

b ~ ~ 2 ,  (25) 

822/'44/1-2-16 
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On the strip, it has thus the scaling behavior 

linao~ ~ -  (26) 

If one does not want to work with polymers of zero length, (1'21 the virial 
coefficient on strips is no more given by bn. However when fl goes to tic, 
this coefficient depends on very long polymers only, so the formula (26) is 
still valid. The universal ratio N is thus simply related to the scaling 
behavior of the second virial coefficient in the case of polymers. 

In conclusion we have developed two independent transfer matrix 
methods for the calculation of the exponent 7 in the SAW problem. Our 
first method is a simple application of the relation between the amplitude 
of the correlation length at the critical point and the exponent r/, while our 
second method involves the calculation of properties of strips with several 
polymers. The results (9) and (21) of these two methods are both com- 
patible with the conjectured value (") of the ratio 7Iv = 43/24 = 1.79167, and 
they both exclude the old value {3) 7Iv = 16/9 = 1.77777. Our best result (9) 
compares well with the precision of the most recent series analysis. (s) The 
result (21), although less satisfactory, is comparable in precision to the 
estimates of less extensive series analysis (4) or of Monte Carlo simulations. 
These two methods thus provide a good way of determining the exponent 7 
by the transfer matrix method in the case of SAWs. They could easily be 
extended to other situations like the O point of 2D linear polymers. We 
hope to do such a calculation in the next future. The first method using 
conformal invariance could also be extended to the determination of other 
exponents by looking at the other eigenvalues of the transfer matrix. The 
second method using several polymers could be used also in the study of 
the properties of polymer solutions. 
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